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Machine Learning Disruption Predictor Overview

A Goal:To develop aobust data-drivenalgorithm that successfullyredictsdisruption events with
sufficient warning time

A Databases of relevant parameters on IJAlcatorGMod, EAST, and KSTAR
A Implemented a reatime predictor running in the plasma control system on-DIII
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Disruption Warning Database

A Focus on dataset of 1258 plasma discharges (disruptive &
disruptive) from DD 2015 campaig(D p 1ttime sample}¥
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Binary Classification Based on Disruptive Phase Assumption

A Focus on dataset of 1258 plasma discharges (disruptive &
disruptive) from DD 2015 campaig(D p 1ttime samples)
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Classification of TimeSamples Using Random Forest

probability histogram ==

A Preliminary analysic choset O UL @t i based on physics parameter distributions
A Published timesample classification results in recdtiasma Physics and Controlled Fusion
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From Time-Sample Predictions to Redlime Alarms

A Each tree in the random forest outputs
one of two possible outputs:

A 0 (far from disruption)
A 1 (close to disruption)

A Final RF output is the average of the
iIndividual tree predictiong we call this
the disruptivity
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From Time-Sample Predictions to Redlime Alarms

A Each tree in the random forest outputs

one of two possible outputs:
A 0 (far from disruption)
A 1 (close to disruption)

A Final RF output is the average of the
iIndividual tree predictiong we call this

the disruptivity

A How do we use the disruptivity to

trigger an alarm?

A Trigger when disruptivity exceeds
hysteresis threshold for a specific

time window
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Shotby-Shot Binary Classification

A Classifyeachshot according to whether or not it disrupted:
A Disruption (positive class) dlon-disruption (negative class)

Was the alarm triggeredp?

: Pray.
Qoe;\m@ Yes No ed’Cl‘ed
50
R Did the shot disrupt? Did the shot disrupt?
Yes No
True Positive False Positive False Negative True Negative
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Parameter Optimization

1. TimeSample Class Label Threshdid ( ) \
2. Disruptivity Threshold( RF level

3. Time Window Size)() < \ Alarm level (posprocessing)
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Parameter Optimization

1. TimeSample Class Label Threshdid ( ) \
2. Disruptivity Threshold( RF level

3. Time Window Size)() < \ Alarm level (posprocessing)

Training ' Test
Set Set
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Parameter Optimization

TimeSample Class Label Threshdid ( ) .\
Disruptivity Threshold( \ RF level
Time Window Size)() 4 Alarm level (posprocessing)

Training ' Test
Set Set

Needcrosggl ft ARIF GA2Yy LINRPOS&aa (G2 Syadz2NE || NROdzai
generalization capabilities

Test

Training —) Validation
Set

Set Set

Optimize over loop
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K-Fold Cross Validation

Iteration 1 Validation Train Train Train Train Pseudocode.
For i in[1,5]:
For each class label time, Usjass -
_ : . . . Train random forest on O ®Q
Iteration 2 Train idati Train Train Train . . . " "
Validation Gettime - slice predictions on w wQ
For each disruptivity/window pair:
Test alarm simulation on O OQ
Iteration 3 Train Train Validation Train Train Calculate performance metrics
After loop:
Average performance metrics over all 5
teration 4 Tt Tt Tt oo Tt iterations for each parameter triplet
Pick best disruptivity threshold, window, and
class label time (triplet that maximizes F1)
[teration 5 Train Train Train Train Validation
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Maximizing the F1 Score (Figure of Merit)

F1 Score
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Maximizing the F1 Score (Figure of Merit)

F1 Score
A Best operational point (with — 0.72
highest average F1 score):
10.64
[[’fh')hT | T@WQI{UCU(’% SRS, [1.00_1| f556
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/5% of Test Set Disruptions Predicted > 40ms in Advance

A Trained random forest on entire training set using optimized

A Tested random forest predictor on entire test set using optimi@aa
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Test Setnterpretabllity
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Ip [MA]

Feature Contributions

False Predictions

A Most false predictions show small or negative contributions frpm, the normalized p

radial field componentand/or € T¢
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Summary

A Our datadriven crossvalidation procedure validates our univariate analysis of the distinction
0SG6SSY WRA A NJZLAINGHAIIRA SR LIKI2aySa 2y LI FayYl RA
A Of the 10 signals in our DDI 2015 database, the 3 most relevame:

1. N wv
2. Y6 T6
3 &t

A Our model runs at very low cost (low false positive rate), and predigtsu f disruptions

Future Work
A Improve crossvalidation procedure with atm®& SLISY RSY i YSUNAROX a2z UKL
point is a function of the physics parameters
A Compare results to an algorithm that incorporates tihependency
A Test robustness of results by applying to larger database of different campaigns and facilities
A Expand set of input physics parameters
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Backup Slides
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Disruption Warning Database

A SQL databases witfatlab, IDL, and Python queries Device Discharges Time Samples

A All disruptions included, regardless of cause GMod 5507 498.925
A D 1 1plasma parameters at each time sample/record | gagT 14713 1.209.217
A Parameters potentially available in real time DIILD 10258 2,356,519
ASdzNAY3 UNIAYAYIS 6S | @02 A Resled A Y398 273083

Non-causally filtered data

Intentional disruptions

Disruptions caused by hardware failure (specifically check for feedback control on plasma
current or UFOs events)

o Time samples not in the flattop phase
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Random Forest

A An ensemble of many uncorrelatethssification and regression trees
A At each node in the each tree, the data set is split on a random featungrbgnizing impurity
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Test Setnterpretabllity

A For feature vectory can expresdisruptivity '‘Qa as sum of) feature contributions& bias term
A Tracking feature contributions can give idea of drivers of disruptive behavior

- Feature contribution breakdown:
Prediction: T80 == 0.94 (model bias)

True \Fﬂ‘l
-0.38 (loss, V1oop)
V;:f;;gﬁfz +0.19 (gain, Te_ width normalized)
samples = 5.2% + 0.1/ (gain, g95)
value = |0.58, 0.42] .. ;
T' Prediction function for one tree
Te_wicth_normalized <= 0.7832 Wrhd <= 269241.6875 - N -~
---D.ﬂ4 "-UMW ”n \ 7 € r 1 1 A} [3 )
[ E:'I:LEE-BWE E::;IEE-EEL Q(D) w WE € O(lhm(ﬂ
ualue-mn u.aa]  value = [0.33,067]
.

Prediction function for dorestof J trees:

"G{do)% & % Oé & d B

ip_error_| Irar.-:- -0.0109
gini = 0.415
samples = 2.2%
value = [0.71, 0.29]
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RealTime Implementation

A Has run continuously in
DIIFD PCS for more than
850 discharges

A 66% nondisruptive

A 6% flattop
disruptions

A 28%rampdown
disruptions

A Feature contributions
potentially available in
real time for
Interpretation

A Low false positive rate
T P on non
disruptive discharges
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